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ABSTRACT

This paper analyzes various types of weather-related risks in different industries. Due
to the existence and popularity of the established weather insurance market, we also
discuss the differences between weather derivatives and insurance, and the advan-
tages of using weather derivatives instead of insurance in weather risk management.
First, we discuss the applications of temperature futures by providing a static, simple
strategy to hedge volume risks in practice. Then, by building up a system of models
for energy and temperature, we propose a dynamic hedging strategy in order to hedge
energy futures using temperature futures.

Keywords: weather derivatives; mean-reverting process; energy markets; dynamic hedging; crude
oil futures.

1 INTRODUCTION

Weather, and especially temperature, risks have a significant impact on the oper-
ational and financial decisions and revenues of various industries, such as energy
producers, distributors and retailers. Due to the notably increasing occurrences of
extreme weather and temperature volatility at high latitudes, weather is increasingly
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TABLE 1 Industries, weather exposure and types of risk.

Industry Weather type Risk

Energy consumer Temperature Excessive or reduced
demand

Energy industry Temperature, wind, Excessive or reduced
solar irradiance, supply
precipitation

Agriculture Temperature, Crop yield, handling,
precipitation storage, pests

Retailing Temperature, Reduced demand
precipitation

Travel Temperature, Cancelations or
precipitation, lower revenue
snowfall

Transportation Temperature, Delays, cancelations,
precipitation, higher operational
wind, frost day, costs, lower
snowfall revenues

Government Temperature, Higher budget costs
precipitation,
snowfall

Construction Temperature, Delays, higher
precipitation, budget costs
snowfall

affecting supply and demand in businesses. In these circumstances, hedging strate-
gies and weather derivatives that can be deployed to transfer risk exposures to willing
counterparties become increasingly valuable and useful. In applying weather deriva-
tives to other commodities markets, the primary aim of this paper is to consider
the cross-hedging strategy for other commodity derivatives using weather futures
contracts.

1.1 Weather risks

Weather conditions affect our food, clothing, shelter and transportation – almost all
the basic necessities of life. In recent years, several studies (see, for example, Dutton
2002) have estimated that more than one-third of private economic activity in the
United States is exposed to weather risks, revealing that weather is a major factor that
affects almost all economic activity. In Table 1, we list some of the industries that are
exposed to weather risk and the particular risk(s) that they are facing. From Table 1,
we can conclude that weather affects economies worldwide and has an impact on
either revenues or costs, or both.
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In the risk management arena, two types of weather risk can be defined (see
Leggio 2007). A weather risk that is referred to as a high-probability, limited-loss
weather event is categorized as a “noncatastrophic weather risk”, whereas a low-
probability, huge-loss weather catastrophe is defined as a “catastrophic weather risk”.
The impact of catastrophic weather risks has been recognized, acknowledged and
managed directly by insurance contracts. Noncatastrophic weather relates to an
extreme deviation from the usual weather, such as warmer winters or cooler sum-
mers. Hereafter, we are concerned with the hedging of noncatastrophic weather
risks.

Based on the description in Cogen (1998), noncatastrophic weather risk can be
defined as the uncertainty in future cashflows as a result of seasonal variations in the
weather. This type of risk differs from other financial risks in the following aspects:

� weather risk is a “volume” risk that affects quantity but not price;

� weather risk is a highly localized risk;

� weather risk has low correlation with other financial risks;

� there is no physical market for weather indexes, and weather is a purely
exogenous risk that is beyond people’s control.

From the description above, we know that, as a source of risk, weather is specific
because it primarily affects the quantity of supply or demand for a certain product.
This is the main reason that the weather risk we are talking about here is a volumetric
risk rather than a significant price risk.

1.2 Weather derivatives and insurance

In the area of financial risk management, insurance and derivatives are two major
financial risk management tools. In a sense, weather derivatives are a combination
of insurance and capital markets. However, weather derivatives provide benefits that
weather insurance does not. First, to make a claim on an insurance contract, the
holder must provide evidence of the damage and assess the losses directly caused by
a specific weather event. Unlike insurance, a weather derivative offers a payoff with
a value based solely on the output of the weather index measured and provided by
an objective third-party agency. Second, hedging with weather derivatives has fewer
contracting costs, since there is less moral hazard and there are fewer adverse coun-
terparties involved in such trading. Third, weather derivatives are more convenient
than insurance to protect against high-probability events with limited losses. Hence,
in general, weather derivatives offer various benefits over alternative weather risk
management tools, since they can
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� transfer weather-related risks to a party that can manage them more efficiently,

� provide compensation for losses that occur,

� offer a payoff simply based on weather index value (a field inspection is not
needed),

� eliminate the insurable interest in the subject of insurance,

� be hedged relatively easily, since weather risk is primarily a volume risk.

With these benefits, it is natural for industries to use weather derivatives to stabilize
their revenues, cover over-budget costs and reimburse losses. Moreover, since the
underlying indexes of weather derivatives have limited correlation with other financial
indexes (see Cao et al 2004; Platen and West 2004), they can also be used as an
alternative asset class to diversify investment portfolios.

2 HEDGING WITH TEMPERATURE FUTURES

In this section, as an application of weather derivatives, we use futures contracts
written on temperature to demonstrate the hedging strategies for commodities. No
payment is required to enter a futures contract position since the probability of a
weather event being lower or higher than the threshold is the same for both sides;
either side has the same chance of receiving a payoff from the counterparty.

We introduce two types of hedging strategies using temperature futures in the fol-
lowing sections. The first strategy is a static hedging that mainly focuses on mitigating
the volume risk of commodity sales using temperature futures. The other strategy we
consider is the dynamic hedging strategy of commodity futures using temperature
futures. Without loss of generality, we choose to hedge the energy market using
temperature futures in this section.

2.1 Static hedging for volume risks

As we discussed in the introduction, many industries, especially energy utilities, are
exposed to weather risks. From the heating oil spot price example in Section 2.2, we
can see that there is a limited price risk related to weather seasonality. Even if this is
not the case for other commodities, people can still use other hedging instruments,
such as more suitable corresponding commodities futures, to hedge the price risk.
Hence, the weather risk we want to hedge here is mainly the volume risk faced by the
energy sector.

A typical example would be an electricity retailer in Canada experiencing a low
demand on electricity (for air conditioners) during an unusually cool July. With the
cumulative average temperature (CAT) future available with price C$540 in April, the
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FIGURE 1 Illustration of log electricity sales (demands) versus CAT index in July.
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firm could enter a short position on a CAT futures contract with the month of July being
the measurement period. If the finally realized CAT index is C$480, which means July
eventually becomes cool,1 the seller of the CAT future will receive a reimbursement
of C$60� 20 D C$1200 for the low sell volume of electricity in July.2 To construct a
static hedging strategy for this electricity retailer firm, suppose the weather-dependent
electricity sales (demands) have the empirical illustration shown in Figure 1. Let P
be the marginal profit of achieving an additional log demand of 1%, and let E be the
estimated marginal effect of a 1ıC CAT on log demand, starting from the realized
CAT index. Based on Figure 1, E is the slope of the solid black line, which connects
the realized CAT (C$480) and the market future price of the CAT (C$540). Then,
if we hold a number, h, of CAT futures with S as the tick value of the CAT future,
the exposure to the demand fluctuations caused by temperature is approximately
PE.CAT � FCAT/, and the benefit of holding h CAT futures is hS.CAT � FCAT/.
Hence, our hedging strategy under no transaction cost is to sell h? CAT futures, such
that PE D h?S (ie, the optimal static initial hedge ratio h? D PE=S ).

2.2 Dynamic hedging with temperature futures

Next, we will focus on the dynamic hedging strategy of energy futures using temper-
ature futures. In the spirit of Bradie and Jain (2008), we consider a portfolio at time

1 Since the average temperature for each day in July was only about 15ıC in this case.
2 The Chicago Mercantile Exchange (CME) tick size for the Canadian CAT index is C$20 per index
point.
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t containing one unit of energy (eg, heating oil) futures FE and ˇt units of weather
futures FW,3 both with maturity (delivery) at time T .4 Assume the portfolio has the
value ˘.t/ at time t and a constant risk-free interest rate r . Then,

˘.t/ D e�r.T�t/ŒFE.t/C ˇtFW.t/�: (2.1)

The portfolio is self-financing, so the change in this portfolio over a small amount of
time dt is given by

d˘.t/ D r˘.t/ dt C e�r.T�t/ŒdFE.t/C ˇt dFW.t/�: (2.2)

Hence, in order to dynamically hedge the energy future FE with maturity T , the
stochastic component of the portfolio vanishes and the hedge ratio ˇt can be defined
as

ˇt D �
dFE.t/

dFW.t/
; (2.3)

with an assumption that dFW.t/ ¤ 0. Therefore, from (2.3), to hedge an energy
future, we are required to hold ˇt units of temperature future at time t . Then, we
need to specify two models for energy and temperature futures so that we can get
the explicit dynamics of energy and temperature futures, and hence a closed form
of the hedge ratio ˇt . For the purpose of futures pricing, these models will be built
on the underlyings of futures: namely, the energy spot price and the daily average
temperature.

Note that another type of hedging ratio is called the optimal hedge ratio (see, for
example, Hatemi-J and Roca 2006; Yeh 2008), which takes the form

ˇt D �
cov.dFE.t/; dFW.t//

var.dFW.t//
; (2.4)

where cov is the covariance and var is the variance. If we are clear about the dynamics
of the energy and temperature futures, it is also possible to apply this dynamic hedging
strategy.

3 ENERGY AND TEMPERATURE MODELS

3.1 Energy model

As a classical commodity model, and the most widely used for pricing energy deriva-
tives, we consider Schwartz’s celebrated model; for simplicity, we use the one-factor

3 ˇt is the hedge ratio for weather future FW.
4 We will discuss the setting of a temperature future measurement period corresponding to the energy
future delivery time later on.
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model in Schwartz (1997), ie, the natural logarithm of the spot price of the energy
commodity is assumed to follow a mean-reverting process driven by Brownian motion.

As usual, we assume trading in the market takes place in the time interval Œ0;T �
with a finite time horizon T <1. Suppose, given a probability space .˝;F ;P/, the
energy spot price S.t/ at day t 6 T follows the stochastic process

dS.t/ D �.� � ln.S.t///S.t/ dt C �S.t/ dW.t/; (3.1)

where � is the mean-reversion speed, � is the long-run mean to which the log-spot
price reverts, � , as usual, is a measurement of the volatility and W.t/ is the stan-
dard Brownian motion. This model is widely studied and has closed-form solutions.
Moreover, we only need to estimate three parameters in this model, which makes it
convenient to calibrate as well.

If we define X.t/ D ln.S.t//, which is the log of the spot price, and apply Ito’s
lemma, we get the X.t/ dynamics of the stochastic differential equation

dX.t/ D �

�
� �

�2

2�
�X.t/

�
dt C � dW.t/: (3.2)

Note that (3.2) is a standard Ornstein–Uhlenbeck process driven by Brownian motion.
Our aim is to derive the arbitrage-free and explicit dynamics for the future price

FE.t/; therefore, we need to specify an equivalent martingale measureQ as the pric-
ing measure first. Since the P -measure dynamics of the spot price S.t/ are driven by
Brownian motion, we choose the probability measure Q using a Girsanov transfor-
mation. We assume a constant market price of risk � <1,5 then define the stochastic
process

Z� .t/ D exp

�Z t

0

� dW.t/ �
1

2

Z t

0

�2 ds

�
: (3.3)

Hence, the probability measure Q� can be defined with the density process Z� over
Œ0;T � as

Q� .A/ D EŒ1AZ� .T /�; (3.4)

where 1A is the indicator function over probability spaceA, and T is a fixed bounded
time greater than the current time t . Based on the Girsanov transformation, the
Brownian motion under measure Q� is then defined as

dW � .t/ D dW.t/ � � dt: (3.5)

The dynamics of X.t/ under measure Q� then become

dX.t/ D

�
�� C �

�
� �

�2

2�
�X.t/

��
dt C � dW � .t/: (3.6)

5 For illustration, we consider the market price of risk here as a bounded constant.
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Further, by application of Ito’s lemma, for � > t the stochastic process X.�/ has the
explicit solution under measure Q� defined as

X.�/ D X.t/e��.��t/C
1

�

�
��C�

�
��

�2

2�

��
.1�e��.��t//C

Z �

t

�e�.s��/ dW � .s/:

(3.7)
From the solution under measure Q� and Ito isometry, the log-spot price X.�/
conditioned on X.t/ is normally distributed under Q� with expectation

�X .�/ WD E� ŒX.�/ j X.t/� D X.t/e��.��t/C
1

�

�
��C�

�
��

�2

2�

��
.1�e��.��t//;

(3.8)
and variance

�2X .�/ WD Var� ŒX.�/ j X.t/� D
Z �

t

�2e2�.s��/ ds D
�2

2�
.1 � e�2�.��t//: (3.9)

With this result, we can move on to calculate the future price for the energy commodity.
Assuming a constant risk-free interest rate, the future price at current trading time

t of an energy commodity with delivery time T , 0 6 t < T , is the expected price of
the commodity at time T under the equivalent martingale measure. Since we know
that

X.T / j X.t/ D ln.S.T // j ln.S.t// � N.�E; �
2
E /;

S.T / j S.t/ is then lognormally distributed. From the first-moment formula of the
lognormal distribution,

FE.t; T / D E� ŒS.T / j S.t/� D exp.�X .T /C 1
2
�2X .T //; (3.10)

where �X .�/ and �2X .�/ are given in (3.8) and (3.9).
Next, we derive the dynamics of the energy future price dFE.t; T / under measure

Q� . If we recall (3.6) and apply Ito’s lemma, we get

dFE .t; T / D

�
@FE

@t
C
1

2

@2FE

@X.t/2

�
dt C

@FE

@X.t/
dX.t/: (3.11)

As long as the future price process in (3.10) is the conditional expectation of the spot
price at maturity time T , the future price process FE.t; T / is a Q� martingale, and
all coefficients of the dt term vanish. In theQ� dynamic ofX.t/, the only coefficient
of the dW � .t/ term is � . By calculating the partial derivative @FE=@X.t/ based on
(3.10) and multiplying by � , we get

dFE.t; T / D �e��.T�t/ exp.�X .T /C 1
2
�2X .T // dW � .t/; (3.12)

where �X .�/ and �2X .�/ are given in (3.8) and (3.9).
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3.2 Temperature model

Because the dynamic hedging strategy we are considering here also needs the explicit
weather futures dynamics, we have to consider a temperature model to derive the
dynamics of temperature futures. Without loss of generality, we focus on using CAT
futures to hedge the energy future as an example of weather futures. We choose the
underlying temperature model for the CAT future to be the widely used Ornstein–
Uhlenbeck model (Benth and Šaltytė-Benth 2005; Swishchuk and Cui 2013).

Given a probability space .˝;F ;P/, suppose the daily average temperature T .t/
on day t with 0 6 t 6 T <1 follows the stochastic process

dT .t/ D ds.t/C �.T .t/ � s.t// dt C �.t/ dW.t/; (3.13)

where s.t/ is the seasonal mean level of temperature, � is the mean-reverting speed,
�.t/ is volatility and W.t/ is a standard Brownian motion. This type of stochastic
model was introduced and studied by Dornier and Queruel (2000) and Alaton et al
(2002) and proven to be particularly suitable for capturing the evolution of temperature
through time. Note that, to get the explicit dynamics of the CAT future price, unlike
the daily average temperature model in Swishchuk and Cui (2013), which is driven
by the general Lévy process, we choose the random variable in the model to be a
standard Brownian motion. When we compare this Ornstein–Uhlenbeck model with
the one we used to model the energy spot price in (3.1), we find that the model in
(3.13) adds the long-term seasonal mean s.t/ term. The reason for this is that Dornier
and Queruel (2000) found that if the long-term mean level s.t/ is a time-varying
deterministic function (not a constant), then the term ds.t/ needs to be added so that
the dynamics T .t/ actually revert to the mean s.t/.

To derive the dynamic of the CAT future price, we use the real measure P -
equivalent martingale measure Q� given by the Girsanov transformation.6 Recall
that dW � .t/ D dW.t/ � � dt is a standard Brownian motion under measure Q� .
Hence, the Q� dynamics of T .t/ becomes

dT .t/ D ds.t/C .��.t/C �.T .t/ � s.t/// dt C �.t/ dW � .t/: (3.14)

By application of Ito’s lemma, for � > t the stochastic process T .�/ has an explicit
solution under the Q� measure given by

T .�/ D s.�/C .T .t/ � s.t//e�.��t/

C

Z �

t

��.u/e�.��u/ duC
Z �

t

�.u/e�.��u/ dW � .u/: (3.15)

6 ThisQ� -equivalent measure has the same measure definition used in (3.4) for the energy market.
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Again, we can see from (3.15) that the daily average temperature T .�/ conditional
on T .t/ is normally distributed under a Q� measure with expectation

�T .�/ WD E� ŒT .�/ j T .t/�

D s.�/C .T .t/ � s.t//e�.��t/ C
Z �

t

��.u/e�.��u/ du; (3.16)

and variance

�2T .�/ WD Var� ŒT .�/ j T .t/� D
Z �

t

�2.u/e2�.��u/ du: (3.17)

A straightforward use of Swishchuk and Cui (2013, Theorem 1) would give us the
future priceFCAT.t; �1; �2/ at time t 6 �1, written on the CAT index over time interval
Œ�1; �2� as

FCAT.t; �1; �2/ D

Z �2

�1

s.u/ duC ��1.T .t/ � s.t//.e�.�2�t/ � e�.�1�t//

C ��1
Z �2

t

��.u/.e�.�2�u/ � 1/ du

� ��1
Z �1

t

��.u/.e�.�1�u/ � 1/ du: (3.18)

Similarly to the energy future case, to derive theQ� dynamics of the CAT future price
dFCAT.t; �1; �2/, recall the Q� dynamics of T .t/ in (3.14) and apply Ito’s lemma.7

Thus, we have

dFE.t; �1; �2/ D

�
@FE

@t
C
1

2

@2FE

@T .t/2

�
dt C

@FE

@T .t/
dT .t/: (3.19)

The price process FE.t; �1; �2/ is by construction a Q� martingale and the only
coefficient for T .t/ in (3.18) is ��1.e�.�2�t/ � e�.�1�t//; therefore,

dFE.t; �1; �2/ D �
�1.e�.�2�t/ � e�.�1�t//�.t/ dW � .t/: (3.20)

Up to this point, we have already obtained the explicit dynamics of future prices
under the P -equivalent martingale measure Q� for both energy futures and CAT
futures. Next, we consider the dependence between the underlying energy spot price
and average daily temperature. In a simple situation, this dependence could be mod-
eled with a linear correlation between the sources of randomness of the spot price and
temperature. Mathematically, under the real measure P for energy and temperature
underlyings, we assume the energy spot price model in (3.1) and the temperature

7 Denote FCAT.t; �1; �2/ as FE.t; �1; �2/.
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model in (3.13) are driven by two linearly correlated standard Brownian motions,
WE.t/ andWW.t/ respectively.8 The time-dependent joint evolution of the Brownian
motions is related to a correlation coefficient � as

dWE.t/ dWW.t/ D � dt: (3.21)

Note that this dependence relationship between the driving random variables is under
a real measure P , but the derived future dynamics in (3.12) and (3.20) are related
to Brownian motions under the pricing measure Q� . So, we need to figure out the
dependence of dW �

E .t/ and dW �
W.t/ under the pricingQ� measure based on the Gir-

sanov transformation. Recall that, through the Girsanov transformation, the Brownian
motions for the energy market dW �

E .t/ and weather market dW �
W.t/ under the Q�

measure are defined as

dW �
E .t/ D dWE.t/ � �E dt;

dW �
W.t/ D dWW.t/ � �W dt:

Hence, the dependence between the two Brownian motions with respect to measure
Q� is

dW �
E .t/ dW �

W.t/ D .dWE.t/ � �E dt /.dWW.t/ � �W dt /

D dWE.t/ dWW.t/ � �W dWE.t/ dt � �E dWW.t/ dt C �E�W dt dt

D dWE.t/ dWW.t/ D � dt: (3.22)

Then, from (3.12), (3.20) and (3.22), our combined Q� dynamics system for energy
futures and CAT futures are

dFE.t; T / D �Ee��E.T�t/ exp.�X .T /C 1
2
�2X .T // dW �

E .t/;

dFW.t; �1; �2/ D �
�1
W .e�W.�2�t/ � e�W.�1�t//�W.t/ dW �

W.t/;

dW �
E .t/ dW �

W.t/ D � dt:

9>>=
>>; (3.23)

Remark 3.1 Note that the futures dynamics in system (3.23) depends on different
time scales. In particular, the dynamics of energy futures only depend on the current
time t and the delivery time T , but the CAT futures dynamics depend on the current
time t , the measurement starting time �1 and the ending time �2. First, based on
the classical cross-hedge strategy, we know that the maturity of the futures contract

8 The subscript E denotes “energy” and the subscript W denotes “weather”.
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FIGURE 2 Illustration of futures contract time scales.
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should be close to the maturity of the hedge (see Hull 2005). Second, consider the
futures price dynamics for both energy and temperature market trading at time t . The
energy futures priceFE.t; T /with maturity (delivery) time T > t > 0 is theoretically
the expected spot price at time T , whereas the CAT futures price FW.t; �1; �2/ is the
theoretical expected cumulative temperature index during the measurement period
Œ�1; �2�. It is natural to expect that the underlying variables for both futures are on
the same time scale. Hence, the maturity time T for the energy futures should be
located in the measurement time interval Œ�1; �2� for CAT futures. In this paper, we
set the termination of trading time for energy futures as equal to the termination time
for temperature futures. Then, �1 and �2 can be selected as the available temperature
futures with the shortest measurement time period, such that �1 < T < �2. The reason
for this is that setting the termination of trading times the same will let the dynamic
hedging strategy cover the entire trading period for both energy and temperature
futures. Figure 2 illustrates this setting and the location of maturity time T in the
interval Œ�1; �2�.

Finally, recall the dynamic hedge ratio ˇt defined in (2.3). Based on the system of
futures dynamics in (3.23), define

c1.t/ WD �Ee��E.T�t/ exp.�X .T /C 1
2
�2X .T //;

c2.t/ WD �
�1
W .e�W.�2�t/ � e�W.�1�t//�W.t/:

)
(3.24)

Using the decomposition of a correlated Brownian motion (see Shreve 2004), the
dependent relation dW �

E .t/ dW �
W.t/ D � dt is equivalent to

dW �
E .t/ D � dW �

W.t/C
p
1 � �2 d OW �

W.t/;
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whereW �
W.t/ and OW �

W.t/ are independent Brownian motions (, dW �
W.t/ d OW �

W.t/ D

0). We have

ˇt D �
dFE.t/

dFW.t/
D �

c1.t/

c2.t/

dW �
E .t/

dW �
W.t/

D �
c1.t/

c2.t/

� dW �
W.t/C

p
1 � �2 d OW �

W.t/

dW �
W.t/

D �
c1.t/

c2.t/

�
�C

p
1 � �2

d OW �
W.t/

dW �
W.t/

dW �
W.t/

dW �
W.t/

�

D �
c1.t/

c2.t/

�
�C

p
1 � �2

0

dt

�
D �

c1.t/

c2.t/
�; (3.25)

where c1.t/ and c2.t/ are time-dependent functions defined by (3.24).

4 NUMERICAL EXAMPLES

We now provide a numerical example for the dynamic hedge strategy proposed in
Section 3.2. The first step for calculating the dynamic hedge ratio is the calibration
of the two models in (3.1) and (3.13) from the energy market and temperature mar-
ket, respectively. Then, with calibrated parameters (deterministic functions) in both
models, we can get the dynamic hedge ratio ˇt defined in (3.25).

First, in the energy market, without loss of generality, we choose to hedge the crude
oil future using CAT futures.9 Following the calibration method described in Schwartz
(1997), the log-future prices lnFE.t; T / need to be rewritten in the standard state-
space form and then Kalman filtered to get the parameter set 	E D f�E; �E; �E; �Eg

and spot price series S.t/.
By taking the natural log of (3.10), for t D 1; : : : ; T and i D 1; : : : ; N , we get the

measurement equation
yt D dt CZtxt C "t ; (4.1)

where observations yt D ln.F.t; Ti // with a dimension of N � 1, and

dt D
1

�

�
�� C �

�
� �

�2

2�

��
.1 � e��.Ti�t//C

�2

4�
.1 � e�2�.Ti�t//

with a dimension ofN �1.10 Zt D e��.Ti�t/ with a dimension ofN �1. The random
noise "t is the N � 1 vector of serially independent disturbances with EŒ"t � D 0 and

9 Crude oil is the world’s most actively traded commodity, and the New York Mercantile Exchange
(NYMEX) CME division’s light, sweet crude oil futures contract is the world’s most liquid forum
for crude oil trading.
10 The T represents the maximum date we considered in the future prices data set, and theN denotes
the number of futures contracts taken into account in each trading day.
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TABLE 2 Estimated parameters for the one-factor Schwartz model.

� � � � �1 �2

Estimate 3.9187 0.0215 0.0025 0.2009 0.0003 0.0123

varŒ"t � D H . By discretizing (3.2), we can derive the transition equation

xt D ct CQtxt�1 C 
t ; (4.2)

where ct D .� � �2=2�/.1 � e���t /, Qt D e���t and 
t is a serially independent
normal random variable with EŒ
t � D 0 and VarŒ
t � D �2�t . Note that the state
(latent) variable xt and all coefficients in the transition equation are scalar.

The state-space form in (4.1) and (4.2) is an enormously powerful tool that opens
the way for handling the model with a latent factor using Kalman filtering. Following
the Kalman filter algorithm in Harvey (1990) and Durbin and Koopman (2012), once
the model has been put into the state-space form, the maximum likelihood estimation
and Kalman filter are ready to be applied to get the parameters estimation and latent
spot price series. The data used to calibrate the energy future consists of daily generic
observations of West Texas Intermediate (WTI) light, sweet crude oil futures prices
with delivery periods in the first two front months.11 The WTI crude oil futures data
used in calibration covers the CME exchange daily settlement prices ranging from
January 2, 2001 to December 31, 2010, resulting in 2508 recorded for each futures
contract set.12 Since there is no exact delivery date for each contract, the CME contract
specification instead defines a delivery period ranging from the first calendar day to
the last calendar day of the delivery month. To calculate the time-to-maturity value
Ti � t in (4.1), we simply assume that the delivery date for each contract is the first
calendar day in the delivery month.

Table 2 presents the estimation results for the energy model applied to the WTI
crude oil futures price data. The last two parameters, �1 and �2, are the diagonal entries
of matrixH in (4.1). Figure 3 on the facing page shows the daily estimated spot price
(state variable) and the oil futures price for the contract closest to the delivery month
ranging from January 2, 2001 to December 31, 2010.

11 This data is obtained from Bloomberg financial services.
12 This choice of data set is consistent with that in Swishchuk and Cui (2013), which includes ten
years of temperature data from January 1, 2001 to December 31, 2010 in Calgary, Alberta, Canada.
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FIGURE 3 Estimated daily spot price and futures price close to delivery.
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Next, for the temperature market, we follow the calibration procedure described in
Swishchuk and Cui (2013) to get the parameter set 	W D f�W; �Wg.13 Note that the
temperature model (Ornstein–Uhlenbeck) in Swishchuk and Cui (2013) is driven by
a general Lévy process instead of the Brownian motion in this paper, since the idea
behind the calibration of the parameters in Swishchuk and Cui (2013) is to separate
the seasonal, cyclical and volatility data step by step to finally get the random source.
The estimates of the mean-reverting speed � and volatility function � will be the
same under the model driven by Brownian motion in this paper. To illustrate this, we
choose the estimated parameters in Calgary to be those under the temperature market
to calculate the hedge ratio. Recalling the calibration results for Calgary in Swishchuk
and Cui (2013), we get the parameter set 	W D f�W; �Wg for Calgary as follows:
�W D �0:2411, and the annual seasonal volatility

�W D 4:424C 1:633 cos.0:0167t/C 0:1912 sin.0:0167t/:

13 Note that the dynamics of the CAT future price only depend on mean-reverting speed �W and
volatility function �W under our temperature model setting.
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FIGURE 4 Initial hedge ratio surface.
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We now return to the dynamic hedge ratio ˇt in (3.25). We have all of the necessary
parameters in both the energy and weather markets, except for the correlation coeffi-
cient � between the two Brownian motions in these markets, since – from the model
settings above – the only randomness of the underlyings in both the energy futures
and the weather futures models is the Brownian motion. We can thus use the corre-
lation between the filtered log-spot price and daily average temperature as a natural
approximation to �. By taking all the average daily temperatures on the dates with
futures prices available, and calculating the correlation coefficient between the log-
spot prices and the average temperatures of these days over ten years (from January
2, 2001 to December 31, 2010), we have the correlation � D 0:1058. This correla-
tion indicates a positive correlation between the log-spot price of crude oil and daily
average temperature.

With the calibrated parameters in the energy and the temperature model, we can
then calculate the dynamic hedge ratio ˇt in (3.25) explicitly. In Figure 4, we plot
the initial hedge ratio ˇ0 along the crude oil future delivery time (in days) and initial
log-spot price dimensions. We find that, if we hold crude oil futures, initially we
need to short some CAT futures in the portfolio, depending on the spot price of the

Journal of Energy Markets www.risk.net/journal



www.manaraa.com

Applications of weather derivatives in the energy market 75

crude oil and the time to delivery (trade termination) length. Basically, the number
of temperature futures we need to hold will increase with increasing time to delivery
and increasing spot price for the crude oil. Moreover, we can conclude that the same
effect holds for other energy commodities, such as heating oil and gas, since they are
usually positively correlated to movement in the crude oil market.

5 CONCLUSIONS AND FUTURE WORK

In terms of the applications of weather derivatives, by analyzing weather-related
risks, we first concluded that the dominant risks for businesses are characterized as
volume risks. Sticking to this point, we gave an example of using a temperature
futures contract to statically hedge the descending sale risks. Looking at the issue
of diversifying risks, we proposed a dynamic hedging strategy by using temperature
futures for energy futures. The estimation of initial hedge ratios showed that the
hedgers need more temperature futures when the delivery time of their energy futures
and the current spot price increase.

The dynamic hedging strategy proposed in this paper can also be extended in several
ways. For instance, the energy and temperature models in the system are both driven
by a single source of randomness, Brownian motion. It would be more realistic and
interesting to try the more general Lévy process or more sources of randomness (such
as multifactor Schwartz’s models or stochastic volatility models), if the dynamics of
the energy and temperature futures could be obtained explicitly.
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